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ABSTRACT

The Automated Code Translation Tool (ACTT) was developed at Naval

Postgraduate School to partially automate the translation Ada programs into software

fault trees. The tool works as follows: 1). The Ada parser and lexical analyzer calls the

AC-T upon recognition of an Ada statement; 2) The ACTT produces a template

representing the statement; 3). The templates are linked together.

The tool was lacking in that it only looked at a subset of Ada structures. The

problem that this thesis addresses is the implementation of the missing language

structures, specifically, concurrency and exception handling, to allow the ACTT to

handle all of the Ada structures.

The result iN a tool that takes the Ada source code and provides the analyst with a

sequence of template,,. and summary information to assist in incorporating hazard

information for generating a fault tree.
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1. INTRODUCTION

The importance of a rigorous software testing program cannot be overstated. As a

rule, software systems do not work well until they have been used, and have failed

repeatedly, in real applications. Experience has shown that errors are more common, or

pervasive, and more troublesome, in software than in other technologies [Ref I. In fact,

products often fail in their first real use after being subjected to inputs and environments

not anticipated by either the programmers or test planners.

A. SOFTWARE SAFETY

Safety has been defined as "freedom from those conditions that can cause death,

injury, occupational illness, or damage to or loss of equipment or property" [Ref. 2].

Software safety then, can be considered as freedom from software-caused death, injury,

damage to or loss of equipment or property. A safe system is one in which every state can

be considered safe. This is an ideal condition, yet to be achieved. All methodologies

presently in use in software development involve humans and humans are fallible.

A reliable system is one which, with a specified probability, will perform its intended

function for a specified period of time under a set of specified environmental conditions.

There is a clear distinction between reliability and safety. Reliability takes into account

every posgible-software error, while safety is only concerned with those errors resulting in

actual system hazards [Ref 3].



With the number of software-based essential systems in transportation, industrial,

consumer, and medical systems continually increasing, safety concerns are becoming a

highly prevalent issue. Hardware reliability and quality have increased to the point that, the

use of software is seen as the determining factor in any increase in the risk of error or

failure. This is due to the complexity of software and the difficulty of validating it against

any possible error [Ref. 4].

Software is inherently safe in isolation, since it alone can do no physical damage. It

can only be considered correct or incorrect with respect to the system in which it is

functioning. Program designers must communicate with system designers (and vice versa)

to ensure that all or at least most of the situational hazards are identified, prepared for, and

treated by the controlling software [Ref 5]. For this reason, software and hardware must

be treated as one entity for analysis purposes.

Unlike hardware, where we can specify tolerance values, we cannot speak of

sensitivity to small errors in software. A single punctuation error can prove disastrous.

Software safety is the tip of an iceberg called sound system engineering [Ref. 6].

B. SOFTWARE SAFETY ANALYSIS

The high "cost" of system errors that compromise life-critical functions provides the

impetus for the development of tools, techniques, and methodologies that will aid in the

identification and prevention of safety failures [Ref 7]. Engineering methodologies for

ensuring hardware safety have enjoyed greater success than efforts for techniques to assist
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in the development of safe software systems. Some of the problems associated with safety

verification include the difficulty of providing realistic test conditions and simulating

hardware errors, transient faults, and system interfaces. Even when simulation is used, it is

difficult to guarantee its accuracy.

Software safety analysis is very similar to hardware safety analysis. The analysis

requires a representation of the program logic such as a detailed design and a list of safety

failures to be analyzed. These failures can be derived from the safety requirements. The

analyst should be presented with a flowchart, and the design of the system on which to

perform the analysis. The goal of the analysis is to find the failure modes or conditions

which are or could lead to the specified safety failures, or to show that the logic contained

in the design is not likely to produce any safety failures [Ref 8]. Techniques such as

Software Fault Tree Analysis, Software Sneak Analysis, and Petri Net Analysis are listed

in MIL-STD-882B [Ref 2], as software safety analysis techniques.

1. Software Fault Tree Analysis

Computers have replaced mechanical devices in many safety critical systems. A

logical step toward safety in software systems is to apply existing tools wherever possible.

One such tool is fault tree analysis.

Fault tree analysis was developed at Bell Telephone Laboratories in 1962 by

H.R. Watson. It was designed initially to be used for safety and jeliability studies of a

missile system. Engineers at Boeing further developed and refined the procedures, and
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became the method's foremost proponents as a method of performing safety analysis of

complex electromc,',anical systems [Ref. 9).

A fault tree is a graphic representation of the various parallel and sequential

combinations of faults that result in the occurrence of the predefined event. These faults

can be the result of component failures, human errors, or any other pertinent events and

states that can lead to the hazard. A fault tree illustrates the logical interrelationships of

basic events that lead to the undesired event which is the top event of the fault tree.

Software Fault Tree Analysis (SFTA) assumes that the system has failed in the

way described by hazard analysis, and works backwards to determine the set of possible

causes for the condition to occur. Taken another way, SFTA starts from the hazardous

outputs (or lack of them) and traces backward to find paths through the code from

particular inputs to these outputs or to demonstrate that such paths do not exist [Ref. 10].

At the root of the fault tree is the event which is to be analyzed, the loss event. Necessary

preconditions are described at the next level with either an AND or an OR relationship.

Each subnode is expanded similarly until all leaves describe events of calculable probability

or are unable to be analyzed for some reason [Ref. 8].

Software fault trees are constructed using symbols from MIL-STD-882B. See

Figure A-I. A rectangle is used to represent an event that requires further analysis.

Diamonds are used for nonterminal events, which are not developed further for lack of

information or insufficient consequences. A circle indicates an elementary event or

primary failure of a component not requiring further development The house is used to

4



represent normally occurring system events. Ellipses are used to indicate a state of the

system that permits a fault sequence to occur. This may be a normal system state or a state

resulting from system failure(s). A triangle represents another sub-tree for the node which

is not depicted on the current tree. AND gates serve to indicate that all input events are

required in order to cause the output event to occur, while OR gates indicate that any of

the input events are satisfactory to produce the output event. These symbols comprise a

subset of those used in hardware to facilitate integration between the hardware and

software fault tree techniques.

Unlike hardware fault trees where hardware components fail independently of

one another, software component failures are typically corelated. Even with the modern

trend towards software modularity, it is doubtful whether the analysis of software trees

will ever be as precise as for hardware trees. SFTA though, provides direct advantages to

software analysis. These include:

"* Provides the focus needed to give priority to catastrophic events and to determine the
environmental conditions under which a correct state becomes unsafe.

"* Provides a convenient structure to store the information gathered during the analysis
which can be used later for redesign.

"• The technique is familiar to hardware designers.
"* Provides a single structure for specifying software, hardware, human actions, and

interfaces with the system.
"• Allows the examination of the effects of underlying machine failures or environmental

changes versus verification techniques which assume system operates correctly.

Software Fault Tree Analysis provides extra assurance by focusing on hazards. by forcing

a different view of the software, and by starting from different specifications [Ref. 8 &

10].
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2. Petri Nets and Software Safety Analysis

One technique used in software safety analysis which has not been used to

conduct hardware analyses is Petri nets [Ref. 1 ]. Designed primarily to be used for

system modeling, Petri nets have been used to model and analyze systems for deadlock

and reachability. They have been applied to hardware testing problems, protocol testing,

network testing, and other areas, but their application to general software testing is still in

its infancy [Ref 121. Using a systems approach, hardware, software, and human behavior

can all be modeled using a single Petri net.

A Petri net structure is a 5-tuple consisting of a finite set of places, a finite set

of transitions,' an input function mapping transitions to places, an output function

mapping transitions to places, and the initial marking for the net. A Petri net graph is a

directed multigraph representing a Petri net structure, whose nodes are transitions and

places. It provides a convention for mathematical modeling of discrete event systems in

terms of conditions and events and the relationship between them [Ref. 13]. Places model

system conditions, and transitions model the occurrence of events. See Figure A-2.

Sequencing within a Petri net is controlled by the number and distribution of

tokens in the net. Tokens reside in the places and control the execution of the transitions

of the net. A Petri net executes by firing transitions. In firing, tokens are removed from

input places and deposited in output places. The number of tokens contained in a place is

'The set of places and the set of transitions are disjoint.
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called the marking of that place. The marking or state of the entire net consists of the set

of markings of all the individual places within the Petri net. See Figure A-3.

Petri nets are an excellent analysis tool for describing and studying information

processing systems characterized as being concurrent, asynchronous, distributed, parallel,

non-deterministic, and/or stochastic [Ref 14]. Individual processes can be represented by

a Petri net. A composite net, the union of Petri nets for the individual processes, can

represent the concurrent execution of the individual processes.

C. PREVIOUS WORK

The primary goal of formal techniques for software safety analysis is to ensure that a

software system either satisfies a particular property or exceeds some property. Because

humans are fallible, manual techniques can lead to the introduction of errors.

Computerized aid is mandatory if any software is to be attacked using these formal

techniques [Ref. 15].

McGraw [Ref 16] investigated combining the methodologies of Petri Nets and

Fault Tree Analysis for software safety analysis of an embedded military application. He

proposed using the power of Petri nets to model concurrent systems in a multiple CPU

environment. He concludes that Petri Net models can be applied to concurrent operations

initially. Once the complex system is understood, Fault Tree Analysis can be used at points

where the analyst feels that major problems are most likely to occur.
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Gill [Ref 14] presented a technique to convert and link Petri nets to fault trees and

fault trees to Petri nets to take advantage of both analytical tools. Using Petri nets, the

first step is to describe the system architecture. A shift could then be made to fault trees to

describe the hazards associated with the system and the events that may lead to hazards.

1. Failure Mode Templates

Software Fault Tree Analysis is based on a series of templates that each map

programming language constructs to a subtree. Cha, Leveson, and Shimeall [Ref 10]

discussed a manual method of performing SFTA for the Ada language. A software fault

tree generated from these templates would provide a tree depicting where faults, if they

occurred, could occur. The standard fault tree symbols discussed earlier are used in the

construction of the templates. The Ada language templates are provided in Appendix B.

2. Automated Software Safety Analysis

Automated tools for software safety analysis provide analysts the opportunity

to use their time more efficiently; focusing on the semantics of the analysis and not the

syntax of the code. The existence of lexical analysis tools reduce the costs in developing

automated tools to minimal.

Friedman [Ref 9] described a tool to largely automate the process of

constructing a software fault tree for a given Pascal program. The tool is designed to read

in a Pascal program and a software caused hazard. It would then "fill in" template subtrees

corresponding to the program's constructs. The output of the tool is an ASCII file
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correctly formatted for TREE-MASTER, a commercial product, which can be used for

displaying, editing, and printing the tree.

In his study of the application of Petri net modeling for safety analysis of a

real-time military system (arming device for a guided missile system), Hayward [Ref 13]

determined that without the presence of automated tools, this type of analysis is

impractical, even when applied to a small system. His paper suggests using automated

tools during the creation of the Petri nets and to support queries for unsafe states.

A set of Petri Net Utilities (P-NUT) was developed at UC Irvine. Lewis [Ref

17], using these utilities and the preexisting real-time system Petri net model developed by

Hayward, examined the feasibility of applying automated software safety analysis to

embedded military applications. The utilities proved awkward and difficult to use.

3. Automated Code Translation Tool

Using tools available at the Naval Postgraduate School (NPS), Ordonio [Ref

18] developed an Automated Translation Tool that translates Ada code into a software

fault tree. These toolk included Aflex, an Ada based lexical analyzer, Ayacc, an Ada based

parser generator. and Fault Tree Editor (FTE), an interactive fault tree design tool

developed at NPS Atlex and Ayacc were developed at the University of California, Irvine.

The tool consists of basically four components. The first component is a lexical

analyzer. The lexical analyzer will determine if the given input consists of valid tokens.

The next component is a parser. It will check the given input to ensure that valid Ada

constructs are used. The third component is a template generator that transforms valid

9



statements into templates representing possible events associated with the statement in a

format suitable for SFTA. The final component of the tool is a file generator that will

create a file that meets the specifications of an FTE file type. See Appendix C for a

description of FTE file format.

Fault Tree Editors are used to graphically display and modify fault trees. The

Automated Translation Tool is limited to a subset of Ada structures, specifically, tasking

and exception handling have not been addressed.

D. TRANSPUTERS

A transputer, derived from TRANSmitter and comPUTER, is a microcomputer with

its own local memory and with links for connecting one transputer to another [Ref. 19].

Manufactured by Inmos Ltd., the transputer has two special features: an on chip serial link

for communicating with other transputers, and hardware support for timesfiaring. The

transputer can be used as a single chip processor or in networks to build high performance

concurrent systems. An overview of Flynn's taxonomy for multiple CPU systems will

reveal where transputer systems fit in [Ref 20].

Flynn picked the number of instruction streams and the number of data streams as

classification characteristics for CPU systems. This gives us four classification groups.

Computers with a single instruction stream and single data stream are called SISD

computers, those with multiple instruction, single data streams are referred to as MISD

computers. All traditional single CPU computers are SISD, while presently, there are no
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MISD computers. The next category is single instruction, multiple data stream computers

(SIMD). Array processors fit into this category, where one instruction unit fetches an

instruction and then commands many data units to carry it out in parallel, with different

data sets. Finally, multiple instruction, multiple data stream computers (MIMID). All

distributed computer systems are MIMD. SIMD and MIMD computers are further

subdivided into two groups: shared memory systems and distributed memory systems.

Systems built from transputers are MIMD and use distributed memory.

The transputer can be programmed in most high level languages, and is designed to

ensure that compiled programs will be efficient. Transputers can also be used in single

processor systems (SISD) as process controllers.

Several Navy tactical systems consist of computers with multiple processors.

Consider for example the AEGIS combat system which uses the standard AN/UYK-7

computer with four processors. HP9000 series computers with two 68000 series

processors are used onboard U.S. Navy submarines for Sonar Search Planning and Target

Motion Analysis. In short time, such systems will not be able to handle the increasing

demand for more complex software systems. Parallel processing systems are a must as the

best high-performance uniprocessor architectures are reaching their limits [Ref 21].

E. STATEMENT OF PROBLEM

The development of safe systems controlled by single CPUs is a complex and not

well understood activity. The problem of ensuring the development of a safe system
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becomes even more complex and error-prone in the case of distributed computing

systems.

In a multitasking environment, a computer spends some unit of time (quantum)

executing one task, switches its attention to other tasks at quantum expiration (or task

completion), and eventually picks up where it left off on the original task if it has not been

completed. This is referred to as interleaved concurrency. Overlapped concurrency occurs

in multiprocessor environments, where different processors may execute different tasks at

the same time.

Concurrent programming then is much more difficult than sequential programming.

Not only must consideration be given to the relative speeds of different tasks, but

deadlock is also a key factor. Debugging and testing a concurrent program can be

agonizing because certain errors may depend on the timing of different tasks. The timing

of tasks can vary from one execution of the program to another, so such errors might not

be readily reproducible Additionally, Ada programs have the property that sequences of

statements are reentrant In other words, several tasks may execute the same sequences of

statements at the same time. and therefore different tasks executing the same statements

manipulate copies of any variables within the scope of the sequence [Ref 22].

Raising and handling exceptions in a task environment is similar to raising and

handling them in subprograms with one important difference. If an exception were allowed

to propagate out of a task, it would asynchronously interfere with its parent task, and in

turn, it would be susceptible to the same kind of interference from tasks local to it. This

12



was therefore prohibited by the Department of Defense in its specifications for the Ada

language. [Ref. 23]

The effect of raising an exception depends upon where the exception is raised- task

declaration, task activation, during task execution, or during task communication. This

turns out to be quite an important consideration. For example, exception

TASKINGERROR is raised only once, even if other exceptions are raised in the

activation of many tasks. As previously stated, an exception raised in a task is not allowed

to propagate out of a task. It can only be propagated out of a block or subprogram, but

only after all dependent tasks have terminated,

It has been demonstrated repeatedly, that a balance between manual and automated

techniques in SFTA should be applied during software analysis. The introduction of the

Automated Code Translation Tool prototype was a step towards removing a large portion

of the effort of code translation for Ada source code.

The initial prototype looked at only a subset of Ada structures, and as stated by

Ordonio [Ref 18], cannot be complete until all of the Ada structures are implemented.

This thesis implements the Ada tasking structures absent from the original prototype, and

introduces the exception handling templates. Several additional modifications were

accomplished to further assist the analyst. These will be discussed in Chapter I.

13



F. SUMMARY OF CHAPTERS

Chapter I1 provides a summary of the development process, including modifications,

and reasoning. It concludes with a comparison analysis of an Ada program used by Cha,

Leveson, and Shimeall [Ref 10]. Chapter III covers the modified tool and its application

to the analysis of a military application. Chapter IV summarizes the research, indicating

application and possible areas of future research. Appendix A contains background figures

referenced in Chapter 1. Appendix B contains the Ada structure templates defined by Cha,

Leveson, and Shimeall with some modification.2 Appendix C gives a description of the

information required in a valid FTE file. Appendix D is the source listing for the

application discussed in Chapter III.

2 The first eighteen templates are reproduced from Reference 17.
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II. DEVELOPMENT

A. CREATION OF BASIC TEMPLATES

To fully cover tasking in Ada, the following templates needed to be implemented:

. entry
. select
. selective wait
. select alternative
. conditional entry
. timed entry
. delay
. rendezvous
. abort, and
* exception.

1. Entry Template

Communication between tasks takes place via the actual parameters in the entry

call, and the formal parameters in the corresponding accept statement during rendezvous.

Entry statements without parameters are used for synchronization only. Entry families

allow tasks to have multiple entries, that are all treated in the same manner. The entry

index must be in the range specified in the entry family declaration. The conditions

contributing to an entry call failure are then either a failure during the rendezvous, failure

during parameter evaluation, or failure in the entry index.

2. Select Template

Three types of select statements exist: the selective wait, the conditional entry

call, and the timed entry call. Conditional entry calls are used when an immediate

rendezvous is desired. If the immediate rendezvous is possible, it takes place and the

15



sequence of statements following the entry are executed. If immediate rendezvous is not

possible the alternative sequence of statements (else alternative) is executed. A timed

entry call attempts to establish a rendezvous within a specified time. If the rendezvous is

established within the specified period, the sequence of statements following the entry call

are executed. If the rendezvous cannot be established with the specified period, the

sequence of statements following the delay statement are executed.

The selective wait statement is a bit more complicated. The selective wait

statement gives a task the capability to:

"* accept entry calls from more than one task in a non-deterministic fashion,
"* wait only a specified amount of time for an entry call to be made,
"* perform an alternative action if no entry call is pending and
"* indicate its readiness to terminate [Ref 23].

It can have one or more alternatives followed by an optional else clause and sequence of

statements. A selective-wait_alternative can be any one of the following:

"• acceptstatement [sequence of statements]3

"* delaystatement [sequence-of statements], or
"* terminate.

The presence of a terminate alternative precludes the presence of a delay statement.

Selective wait statements containing else clauses are prohibited from containing terminate

or delay alternatives. Thus, a select failure can be attributed to a timed entry call failure, a

conditional entry call failure, or a selective wait failure.

The select template has bee modified substantially from that presented in

Reference 10. The three possible alternatives contributing to a select failure have been

separated into three distinct templates (selective wait, conditional entry, and timed entry)

'Brackets ([..]) indicate optional occurrence of the item(s) contained within them.
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to reduce tree expansion to only the applicable select grammar rule. An additional

template (select alternative) was derived from the selective wait template. These changes

also provide a closer relationship between the templates and the Ada grammar. See Figure

2-1

Select Template

or

Selective

Timed Wait Conditional
Entry Template Entry

Template Template

Figure 2-1 Select Template

a. Conditional Entry Template

As previously stated, conditional entry calls are used to attempt immediate

rendezvous. Conditional entry calls are cancelled if they cannot be accepted immediately,

To the called task, a cancellation has the same effect as if the call had never been issued.

17



The form of a conditional entry call is:

SELECT
entry call statement
I sequence of statements]

ELSE
sequence of statements

END SELECT;

Failure resulting from a conditional entry call may result from a failure in, or cancellation

of the rendezvous, or a failure during the sequence of statements.

b. Timed Entry Template

If it is needed to establish a rendezvous within a specified time period, a

timed entry call is used. A timed entry call is cancelled if it is not accepted within the

specified time period. The form of a timed entry call is:

SELECT
entry call statement
[sequence of statements]

OR
DELAY expression
[sequence of statementsl

END SELECT;

If the entry call is not accepted within the time specified in the DELAY statement, it is

cancelled and the sequence of statements following the DELAY statement are executed.

Otherwise, the entry call, and the sequence of statements are executed. A timed entry

failure may result from a failure during the rendezvous, the timeout, or the sequence of

statements during the rendezvous.

c. Selective Wait Template
The selective wait statement has the following form:

SELECT
A CCEPT statement
[sequence of statemenits]

18



{OR
A(C"( Ei'Tsiaemeni
[sequence ?f statements/ I'

(ELSE
sequence of statemenits

END SELECT;

Each of the ACCEPT statements is referred to as a select alternative and is of the form:

I when condition => I selectivewaitalternative

Selectivewait_alternatives were previously discussed. A selective wait failure can then be

caused by the select statement when the condition is evaluated as true, the select

alternative, or the else sequence of statements.

3. Delay Template

Task execution can be temporarily suspended by use of a DELAY statement.

The delay statement causes the executing task to remain inactive for at least the specified

time. The task becomes eligible to resume execution upon expiration of the duration. The

form of the delay statement is 'DELAY expression' where expression belongs to a

predefined fixed-point type named DURATION, representing time in seconds.

The capability may be desired for a task to perform some activity on a periodic

basis, but also accept entry calls as they arise. A selective wait using a delay alternative

will provide such a capability. A delay alternative is an alternative within a selective wait

statement that begins with a delay statement instead of an accept statement. If not other

alternative in the select wait is selected prior to expiration of the specified duration, then

the delay alternative is executed.

Braces( .. ) indicate zero or more occurrences of item(s) contained within them.
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Delay statement failures can thus be attributed to failures resulting from the task

being delayed or evaluation of the type duration.

4. Rendezvous Template

Individual processes in Ada are referred to as tasks. The synchronization and

subsequent communication between two tasks (one task issuing an entry call and the

other task accepting the entry call) is referred to as a rendezvous.

Several tasks may desire rendezvous with the same task. If this condition exists,

the rendezvous' will be queued and will occur in a FIFO order. So, at the outset, a

rendezvous failure may occur during the rendezvous, or result from it not occurring. The

conditions under which either of these may cause failure are straightforward .and so the

reader is referred to the figures for the Rendezvous Template in Appendix B.

Note the addition an exception tree to the Task aborted node. As depicted, the

exception TASKINGERROR will be raised if the called task completes before

accepting an entry call or is completed at the time of the entry call, the called task

becomes abnormal during rendezvous, or if an exception raised in the accept statement is

not handled locally within an inner frame. [Ref 23]

5. Abort Template

The ABORT statement is used to stop a task, preventing it from continuing

communication or synchronizing with other tasks, thus rendering it abnormal. Any task

dependent upon an abnormal task also becomes abnormal.

An aborted task does not necessarily terminate immediately. Only if a task is

waiting at an entry call, an accept statement, a select statement, or a delay statement will
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it terminate immediately. Otherwise, termination will occur when the task. reaches a

synchronization point-, i.e., at the start or end of an accept statement, an exception handier.

If a task is aborted in the midst of manipulation a data structure, data may be left in an

inconsistent state. An aborted task does not have the opportunity to deallocate variables,

close files, etc.

Aborting a task may result in failure if the program attempts to abort a task that

has not yet been activated, or the task becomes abnormal while in a rendezvous. Abort

failure may also result from task manipulation of variables during the abort.

6. Additional Modifications

Several record structures, modeled after those contained in the original source

code, were added. These include a data structure for exception table records, and one for

task entry table records. As was used in the original source for procedures and functions,

the exception table record structure is used to keep track of all defined exceptions within

the code, and the task entry structure is used to keep track of defined rendezvous'.

Since the subject of this thesis is centered upon the tasking facility of Ada, it

was decided to generate a separate fault tree per task during parsing {(separate FTE file

generated) to afford the analyst the ability to examine each task body individually.

B. SHARED VARIABLES

Individual processes in Ada communicate through rendezvous. It is also possible for

two tasks to communicate through a global (shared) variable whose scope includes both
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tasks. This is hazardous because it may result in race conditions. Race conditions occur

when concurrent tasks try to manipulate the same device, or update the same variable.

If two tasks access a shared variable, neither can assume anything about the order in

which the other performs its operations, except at the start and end of their rendezvous. If

the shared variables are scalar or access types the following rules must not be violated or

unpredictable results may occur:

"* If a task reads a shared variable between two synchronization points, then no other
task must update this shared variable between these synchronization points; other
tasks are allowed to read the shared variable.

"* If a task updates a shared variable between two synchronization points, then no other
task is allowed to read or update the shared variable between these tow
synchronization points.

Ada allows the programmer to designate the points at which a shared variable is either

read or updated, as synchronization points through the use pragma SHARED. Pragmas

provide the compiler with information that may affect the way a program is listed, the way

a program is translated into machine language, or the order in which a program performs

certain actions [Ref 22].

Since tasking commences at elaboration (immediately prior to begin of the main

program) and is concurrent, those IDENTIFIERS associated with global procedures,

functions, and variables, called or subject to manipulation by tasks are flagged for the

analyst's consideration.

The original source code generated templates through actions placed in the Ayacc

(ada.y) source file. To flag IDENTIFIERs during parsing of the source, actions had to
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added to the Aflex (adalex.1) source file. This is due to the consuming nature of lexical

analyzers; the actual text is not returned to the parser, but merely the token IDENTIFIER

Storage of the IDENTIFIERS (those associated with procedures, functions, and

variables) and keeping track of nesting levels for monitoring visibility required the addition

of a stack package. Each IDENTIFIER is contained within a record structure which

contains information as to whether the IDENTIFIER is a procedure, function, task,

variable, or representation clause. The package prevents duplicate storage of identifiers

and provides an output of those identifiers which may be shared after each task body is

parsed. Condition identifiers, those found in if, when, and case statements, required the

use of a separate stack package due to the nested nature of if-then-else/elsif statements.

C. REPRESENTATION CLAUSES

Communication with the underlying hardware is accomplished through the use of

representation clauses The types available are length clauses, enumeration clauses, record

representation clauses, and address clauses.

Representation clauses are mechanisms provided by the Ada language by which a

program is allovked to control internal representations. Such representations include the

memory address or size of an entity, the amount of storage available for dynamic

allocation or execution of a task, and the underlying representation of particular types.

Representation clauses, along with representation attributes, allow a program to name

implementation-dependant values abstractly, preserving portability [Ref 22].
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Since IDENTIFIERs are popped from the stack when a scope is closed,

representation clauses are placed at the bottom of the stack to prevent them from being

removed. Two stacks are used in the tool. A linked list was used to implement the stack

for all identifiers except the condition identifiers. A generic stack package was used for

storage of these.

D. TRAFFIC LIGHT EXAMPLE

During code development, the traffic light control system [Ref 101 code was used

extensively due to its tasking nature. The code appeared as follows:

1 procedure TRAFFIC is

2 type DIRECTION is (EAST. WEST, SOUTH, NORTH);
3 type COLOR is (RED, YELLOW, GREEN);
4 type LIGHTTYPE is array(DIRECTION) of COLOR;

5 LIGHTS : LIGHTTYPE := (GREEN, GREEN, RED, RED):

6 task type SENSORTASK is
7 entry INITIALIZE(MYDIR: in DIRECTION):
8 entry CARCOMES:
9 end SENSORTASK;

10 SENSOR - array(DIRECTION) of SENSORTASK:

I I task CONTROLLER is
12 entry NOTIFY(DIR: in DIRECTION),
13 end CONTROLLER:

14 task body SENSORTASK is
15 DIR: DIRECTION-
16 begin
17 accept INITIALIZE(MYDIR : in DIRECTION) do
18 DIR:= MYDIR;
19 end INITIALIZE.
20 loop
21 accept CARCOMES:
22 if (LIGHTS(DIR) /= GREEN) then
23 CONTROLLER. NOTIFY(DIR)y
24 end if,

24



25 end loop-
26 end SENSORTASK,

27 task body CONTROLLER is
28 begin
29 loop
30 accept NOTIFY(DIR : in DIRECTION) do
31 case DIR is
32 when EAST I WEST =>
33 LIGHTS:= (GREEN. GREEN, RED, RED). delay 5.0,
34 LIGHTS:= (YELLOW, YELLOW, RED, RED), delay 1.0,
35 LIGHTS:= (RED, RED. GREEN, GREEN)-
36 when SOUTH I NORTH =>
37 LIGHTS:= (RED, RED, GREEN, GREEN), delay 5.0;
38 LIGHTS:= (RED, RED, YELLOW, YELLOW); delay 1.0;
39 LIGHTS:= (GREEN, GREEN, RED, RED);
40 end case;
41 end NOTIFY;
42 end loop;
43 end CONTROLLER;

44 begin
45 for DIR in EAST.. NORTH loop
46 SENSOR(DIR).INITIALIZE(DIR);
47 end loop;
48 end TRAFFIC;

We will now analyze this code, comparing the results produced by the tool, with the

analysis presented by Cha, Leveson, and Shimeall.

The event analyzed was two cars traveling north and east present in the

intersection at the same time. More specifically, a car traveling North is in the intersection

(entered the intersection without stopping since the light was already green), as a car

traveling East desires to enter the intersection. The fault trees developed by Cha, Leveson,

and Shimeall for this condition are shown in Figures 2-6 and 2-7. The fault trees

developed by the Fault Tree Generator are shown in Appendix B (if statement template

and rendezvous template). Figure 2-8 depicts the tool generated fault tree for lines 33-35

which were determined by Cha, Leveson, and Shimeall to be the source of failure.
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An analysis with the tool may have proceeded in the following manner. We first scan

the output information produced by the tool. The first item we are informed of is that

multiple instances a the task SENSORTASK exist. We can examine the code at this point

and see that four instances of task type SENSORTASK are created (sensor.east,

sensor.west, sensor.north, and sensor.south), one for each entrance to the intersection.

See Figure 2-2.

Enter input file: ---- Starting Code Translation ----
1 :procedure TRAFFIC is
2: type DIRECTION is (EAST, WEST, SOUTH. NORTH);
3: type COLOR is (RED. YELLOW, GREEN);
4: type LIGHTTYPE is array (DIRECTION) of COLOR;
5: LIGHTS : LIGHT TYPE := (GREEN, GREEN. RED, RED):
6: task type SENSORTASK

* TRACK MULTIPLE INSTANCES OF TASK TYPE 'SENSORTASK' **

Figure 2-2 Multiple Task Instance Flag

After parsing the body of SENSORTASK, the tool provides a listing of

INDENTIFIERS it has determined to be visible to the task. These are 1) TRAFFIC,

SENSORTASK, and CONTROLLER; the main procedure and the two tasks, 2)

LIGHTS, and SENSOR; global variables, and 3) MYDIR, and DIR; actual entry call

parameters. An identical listing is output after the body of task body CONTROLLER is

parsed. See Figure 2-3.
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The summary information provided by the tool consists of a listing of the procedures,

functions, and tasks, and the listing of possible interleavings (rendezvous'). See Figures

2-4 and 2-5.

The following IDENTIFIERS have been flagged
as global procedures, functions, and
variables that may be manipulated by this
task.

TRAFFIC
LIGHTS
SENSOR TASK
MYDIR
SENSOR
CONTROLLER
DIR

Figure 2-3 Global (Shared) Variable Output

The number of procedures, functions, and
tasks on the table are 3

The procedures, functions, tasks, and their
root faults on the table are the following:

SENSOR TASK
Sequence of statements caused fault

CONTROLLER
Sequence of statements caused fault

TRAFFIC
Sequence of statements caused fault

Figure 2-4 Subprogram Listing

We have only two subprograms to deal with, the tasks SENSORTASK and

CONTROLLER, so we next examine the synchronization points. We see'that entry
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SENSORTASK INITIALIZE is used only to assign a DIRECTION to each sensor, so it

can be eliminated as a source of failure (source lines 45-47).

The possible interleavings are as follows:

INITIALIZE

CARCOMES

NOTIFY

Figure 2-5 Rendezvous Points

Since the variable LIGHTS was flagged by the tool as being a shared variable, and

due to the number of assignment statements, we first examine the body of task

CONTROLLER. For the car traveling north to have entered the intersection without

stopping, the condition of LIGHTS would have to be RED, RED, GREEN, GREEN. The

code reveals that this condition exists for 5 seconds at the start of

CONTROLLER. NOTIFY(SOUTH I NORTH), and at the completion of

CONTROLLER.NOTIFY(EAST I WEST). LIGHTS will remain in this state until another

vehicle enters the intersection. Since we know that the vehicle traveling north entered the

intersection without stopping, no call was made to entry

CONTROLLER.NOTIFY(SOUTH I NORTH), so we must either be at line 35 or have

recently completed a CONTROLLER. NOTIFY(EAST I WEST) rendezvous.

Now looking at entry SENSORTASK.CARCOMES (which makes the entry calls

to CONTROLLER. NOTIFY) we note that there are no restrictions on when the call is

accepted so the entry CAR-COMES will be processed immediately. The if condition is
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examined, and a call will be made to entry CONTROLLER NOTIFY if the cotidilion is

satisfied.' More importantly, it is this if statement that allows the car traveling north to

bypass the rendezvous [Ref 10].

We can conclude then (as did Cha, Leveson, and Shimeall) that the hazard condition

has the possibility of occurring if we have two successive SENSOR(EAST I WEST)

rendezvous' with an intermediate north traveling car entering the intersection at the

completion of the first SENSOR(EAST IWEST) rendezvous.

'The null else implies no call to entry CONTROLLER.NOTIFY.
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Figure 2-6 Sensor(North) at Line 24
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LFault in rendezvous

causes failure Tas cause failure

Sequence of
statmet causes

failure

caused fault caused fault

did not hasit caused fault]
mask f'ault

NOTE: Unlike the anal vsis by Cha, Leveson, and Shimeall, the Fault Tree Generator does not

expand the "Previous statements caused fault" node an.v further. Instead, it expands the "Last
statement caused fault" node. The assignment statement of line 33 will eventually be reached by

way of the case statement template, through expansion of the "Last statement caused fault" node.

Figure 2-8 Tool Generated Fault Tree for TRAFFIC.A
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II. SOFTWARE ANALYSIS

A. SYSTEM BACKGROUND

The Parallel Processor Based Small Tactical System Simulation was developed as

part of The Parallel Command and Decision System (PARCDS) laboratory at Naval

Postgraduate School. The laboratory was established in the early 1980's to support

research for the Navy's AEGIS combat system. The Small Tactical System was modeled

using a network of transputers, and implemented using the Ada programming language in

conjunction with the Alsys-Ada Compiler. Produced by Alsys Limited, United Kingdom,

this was the first compiler capable of supporting multiprocessor programming in Ada [Ref.

211.

The Aegis system, originally designed for the Ticonderoga class (CG-47) guided

missile cruiser, consists of a three dimensional Phase Array Radar AN/SPY-1, the

Command and Decision system (the four processor AN/UYK-7 computer system), and a

weapons control system. Early research at the PARCDS laboratory involved tightly

connected single-processor systems modeling parallel processing. The objective of the

Small Tactical System project was to investigate the possibility of replacing the old

standard Navy's computers for the Aegis real-time combat system aboard Naval ships with

a network of transputers in order to reduce the reaction time of the Command and

Decision System [Ref 21].
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B. SYSTEM DESCRIPTION

The Small Tactical System functions as follows. After target detection, a decision is

made regarding target attacK. If the decision to attack is made, then the target is tracked.

A future position is estimated, and a weapon is launched to intercept the target at a

predicted intercept point. These tasks are divided among three functional subsystems, a

Target Tracker Subsystem, a Target Prediction Subsystem, and a Ballistic Interception

Subsystem. These three subsystems are implemented using a network of five transputers

(see Figure 3-1):

"* T. is the host transputer which performs the Human Interaction.
"* T, performs as the Target Tracker Subsystem.
"* T, performs as the Target Prediction Subsystem.
"* T3 performs as the Ballistic Interception Subsystem.
"* T4 is a hot spare to make the system Fault Tolerant.

Figure 3-1 The designed Small Tactical System

The Target Tracker Subsystem code is the subject of analysis in this thesis.
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C. GENERAL SOFTWARE DESCRIPTION

Radar echo information contains range and bearing to a target of interest. Further

processing of this echo information results in target motion data which may be used in

weapons attack. The tracked data simulation should simulate this same echo information.

The Ada code in Appendix D outputs simulated tracked positions of the target in

three dimensions. The Prediction Subsystem requires this three dimensional data for the

last seven position values be sent at one second intervals. The program assumes that the

target approaches with some acceleration until it reaches its maximum speed, after which,

all velocities remain constant The program provides a textual output of the positions and

velocities of the target every second. In the actual implementation, the output data would

instead be sent to the Prediction Subsystem using transputer communication links.

D. SOFTWARE ANALYSIS

Remember that the basic procedure in FTA involves the assumption that the hazard

has occurred, and no%% %kc must work backwards to determine its set of possible causes.

Also, to summarize, the ftuh tree templates are based on the following assumptions [Ref

10]:

. The Ada program being analyzed is free from any syntax errors.
* The implementation of the underlying virtual machines are perfect.
. Templates currently refer to faults made in the program body - faulty declarations are

not analyzed.
. Statements such as GOTO, are difficult to analyze by a backward trace, and thus are

not analyzed.

The hazard event to be analyzed will be missile launched at incorrect target.
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1. Localization

Refer to Figure 3-2. The main objective of the Ballistic Interception Subsystem

is to compute intercept time. It accomplishes this after first computing the intercept

distance.

Two of the assumptions of the Small Tactical System simulation are 1) a

constant ammo speed, and 2) a straight line bullet trajectory. The intercept time is

computed by dividing the intercept distance by the ammo speed. Based on the above

assumptions, a missile launch at an incorrect target would result from an error in the

computed intercept distance. [Ref 21]

The Ballistic Interception Subsystem computes the intercept distance using

predicted path lines input from the Target Prediction Subsystem. These path lines are

computed from position and velocity vector inputs from the Target Tracking Subsystem.

The Target Prediction Subsystem predicts the future position of the target from these

vector inputs using the Least Square Orthogonal Polynomial. Formulas used in procedures

and functions in both the Ballistic Interception and Target Prediction Subsystems (i.e.,

Simpson's Rule, Least Square Orthogonal Polynomial) are assumed to be error free. We

therefore narrow the source of the error to the Target Tracker Subsystem. The code for

the Target Tracker Subsystem is contained within the procedure PROJECT.'

6In the original document [Ref 191, the procedure name was PROJ vice

PROJECT.

36



Refer to Figure 3-3 and Appendix D. Examining the body of the procedure

PROJECT, we see that the Target Tracker Subsystem will output incorrect vector

quantities (POSITION, VELOCITY) if:

"* the procedure GETVELOCITIES retrieves incorrect values, or
"• the velocity vector itself is in error. (ACCELEROMETER.VEL)

The assignment statements containing the call to the function SIMPSON are discounted,

going along with our assumption that all formulas used are error free. We now examine

the code pertaining to the Target Tracker Subsystem.

2. Isolation

The tool produces several output files for the analyst in addition to the terminal

output. It is recommended that the user redirect the terminal output to a file due to its

length. The file NEWFTE contains the fault tree for all sections of code from the source

file with the exception of task bodies. The tool generates a separate FTE file for each task

body in the source code and names them sequentially, starting with TASKBODYA. The

terminal output contains the following information:

"• Source listing with line numbers.
"* Literal Tree Output, containing Parent node, Node, Parent Gate, and Fault for Node
"* FTE File Output, containing Node, and Fault for Node
"* Listing of procedures, functions, and tasks, and their root faults
"• List of exceptions
"* List of possible interleavings (rendezvous')

As a start, the tool tells us that there are a total of seven procedures, functions, or

tasks:

• it II

* SIMPSON
- INITIALIZE VELOCITY

* GETVELOCITIES
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"* ACCELEROMETER and
"* PROJECT.

There is also one rendezvous- "START". Examination of the code reveals that "+" and

are overloaded functions. Simpson's Rule is used in the function SIMPSON to compute

the position vector, and PROJECT is the main procedure. INITIALIZEVELOCITY,

GETVELOCITIES, both procedures, and task ACCELEROMETER are contained in the

package ATOD.

The overloaded functions "+" and "-", and the function SIMPSON perform only the

stated calculations, and as such may be analyzed in the same manner as discussed in

previous works [Ref 10 & 18]. INITIALIZE-VELOCITY is used set the initial velocity

vector. Since this procedure is used to assign constant values (and we must assume that

these values are both realistic and correctI, it can be disregarded as a contributor to the

hazard event. GETVELOCITIES assigns to the variable NEW_VEL, the contents of the

array VEL, which contains the last five velocity vectors. The contents of this array are

generated within the body of task ACCELEROMETER. Therefore, we must examine the

body of the task.

As with the traffic light example, we have again demonstrated that SFTA is very

human-oriented. Automated tools are being developed primarily to aid in the analysis, not

to replace the analyst.

The rendezvous START is null, and as such, can be ignored. Since the variable

under examination (the array VEL) is local to the package ATOD, and its manipulation
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within the task ACCELEROMETER is being analyzed, the flagged identifiers listing

(printed out as each task body is parsed) can be ignored.

Looking at the code within task body ACCELEROMETER, we find that there are

only two lines that are of concern, lines 128 and 130. As in the procedure

INITIALIZEVELOCITY, the assignment statement in line 130 can be ignored because it

assigns a constant value to VEL(VELOCITIES'LAST). Now let's look at the surrounding

code:

125 loop
126 delay DISPTIME - SECONDS(CLOCK),
127 for I in VELOCITIES'FIRST.. VELOCITIES'LAST - 1 loop
128 VEL(I) := VEL(I + 1);
129 end loop
130, 131 ............
132 end loop;

The parameterless function CLOCK is provided by the predefined package CALENDAR.

It returns a value of type TIME representing the moment at which the function was

invoked. The function should return a different value each time it is called.

It can be seen that any adjustment or correction to the system clock (or frequency

reference) during target tracking will result in the assignment of incorrect velocities for

that time period, which will further result in a path prediction error. See Figure 3-4 for the

tool generated fault tree for this section of code.
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Missile launched at
incorrect target
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distance calculated

* Incorrect predicted path calculation
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Error in position values 
calculationfrom Target Tracker

Target Tracker Subsystem

Figure 3-2 Top Level Fault Tree
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Figure 3-3 Error in Velocity Vector
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Figure 3-4 Tool Generated Fault Tree for Delay Statement Failure
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IV. CONCLUSION

A. RESEARCH SUMMARY

In it's chapter entitled, "Survey of Software Verification and Validation

Techniques", EWICS TC7 (European Workshop on Industrial Computer Systems,

Technical Committee 7) suggests that the effectiveness of testing techniques depends not

only on their proper application, but also on the procedures and standards followed in

constructing the software [Ref 24]. The aim of this thesis was to improve upon a

prototype tool developed to automate the testing and analysis process, and demonstrate its

application to a concurrent real-time system.

In this thesis, the addition of concurrency, and exception handling to the prototype

tool developed by Ordonio [Ref 18] was accomplished. The chosen avenue of providing

the analyst with a separate fault tree for each task body is designed to focus his attention

on this difficult aspect of Ada programming when it exists. Additionally, the tool was

designed to flag concurrency interaction points (those having the capability to bring about

unexpected results). These include shared variables, representation clauses, and

rendezvous.

The exception handling template from Cha, Leveson, and Shimeall was added to the

prototype, along with a modification of the original rendezvous template to include the
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exception TASKINGERROR. Like procedures, functions, and tasks, exception handlers

found in the code are provided to the analyst in a listing.

In the traffic control system example, use of the fault tree generator provided

immediate clues to areas of possible concern, and an ordered focus to the analysis. Use of

automated tools is not meant to replace the analyst, but merely to remove some of the

medial tasking.

The Aegis simulation analysis demonstrates that as complexity of the software

increases, the analyst's knowledge of the system is instrumental in pruning the top level

tree.

B. RECOMMENDATIONS

Who should use this tool? As has been demonstrated, the first obvious candidates

are safety analysts. A major advantage gained in using this type of tool is that it allows the

analyst to remove himself from concerns over syntax. With the tool, a proper balance has

been maintained between human interaction and automation, greatly accelerating the

human analyst's task.

Software maintainers need be especially concerned with concurrency. Unlike

sequential programming, a hidden danger present in concurrent programming is that a

program may depend subtly on the relative speeds of different processes. Additionally,

certain errors may only arise dependant upon the timing of different tasks. When shared
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variables are involved, concurrent task manipulations may be interleaved in unpredictable

ways.

When software changes are made, analysis may be performed to detect new possible

areas which may contribute to failure. The following statement is an excerpt from the

investigation into the Therac-25 accidents:

It is clear from the AECL (Atomic Energy of Canada Limited) documentation on
the modifications that the software allows concurrent access to shared memory, that
there is no real synchronization aside from data stored in shared variables, and that
the "test" and "set" for such variables are not indivisible operations. Race conditions
resulting from this implementation of multitasking played an important part in the
accidents." [Ref 25]

Researchers may find the tool useful for three reasons:

"• As an example of development of automated analysis tools of tasking software,
getting around the state explosion of tasking by annotating the interaction points and
letting the human determine the appropriate interactions to explore.

"• As a basis of further research into analysis of concurrent software.
"* As a basis for automating safety-critical software, integrating other techniques with

fault tree analysis or producing more refined templates.

C. FUTURE RESEARCH

Software analysis of safety-critical software is presently evolutionary vice

revolutionary. The problems and disadvantages of program analysis have so often been

enumerated and explained.

"• It is difficult to apply to larger programs.
"* Some program constructs are difficult to analyze.
"* It is difficult to analyze concurrent and real-time programs.
"* The method can be time-consuming and error-prone if the analysis is performed

manually.
"• It gives no indication of totally missed parts. [Ref 24]

It is crucial that this evolutionary process continue.
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In its present state, the Automated Code Translation Tool does not actually provide

a fault tree per se, but instead, an aggregate of the templates. An important next step

would be to provide the analyst with a 'front end' to the tool which would allow him to

prune the tree of non-contributing branches, and generate an actual fault tree for a selected

root fault from selected templates. This front end could also allow the analyst to integrate

into the fault tree, information provided by other automated tools such as P-NUT.

Gill [Ref 14] believed that Petri nets and fault trees were limited when used

individually, but when combined, could be used quite beneficially. A potential area of

research might involve automation of Gill's technique, with follow-on research pursuing

the combination of that resultant work and the fault tree generator.

With the pending release of Ada-9X, the present tool will have to be modified to

accommodate the new grammar rules. This should prove to be a relatively simple task.

Ada-9X will also provide several new features to the language. These include but are not

limited to:

"* Object-oriented programming with run-time polymorphism.
"• Access types have been extended to allow an access value to designate a subprogram

or an object declared by an object declaration.
"• Additional support for interacing to other languages. [Ref. 26].

The tool can also be used as a model for the development of automated tools for

other languages. C/C++ for example, have a process-based rather than thread based model

of concurrency. Also, exception handling is dealt with much differently in C (and proposed

for C++), in that the language allows for the resumption of processing at the point the

exception was raised.
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APPENDIX A: GENERAL FIGURES

RECTANGLE DIAMOND

ELLIPSE

CIRCLE

TRIANGLE HOUSE

AND GATE OR GATE

Figure A-i Common Software Fault Tree Symbols
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0 Circle represents a place

Bar represents a transition

Directed arcs connect the places and the transitions.

tl

pl Transition tl is an input to
place p 1

ti

O PI •1 Transition t I is an output of
place p 1

Figure A-2 Petri Net Symbology
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A transition is enabled if each of its input places has at least as many

tokens in it as arcs from the places to the transition. A transition may

fire only if it is enabled.

ti

Q H [ Transition tl is enabled

t2

Transition t2 is enabled

t3

C Transition t3 is not enabled

ti tl

t I enabled After t I fires

Figure A-3 Petri Net Execution
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APPENDIX B: ADA STRUCTURE TEMPLATES

Sequence of Statements Template

Seq en fSilients
ECaused 

Fault

Caused Fault Caused Fault

Others

Not ask aultStatement Caused Fault

Statementls)

* Sequence of statements template was not depicted in the
works of Leveson, Cha, and Shimeall.
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Assignment riempipte

EAssignment Clause

Caused :Faul, t

E ~a:e:nVleException Caused Fault 
[ Operand Evaluation

Caused Fault (NCaus~ed 
Fult

(ot Implemented)

Relaton

* There is no difference between the tool generated Assignment Template

and the Leveson, Cha, and Shimeall template.
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If Then Elsif Else Template

If Statement
Caused Fau'lt

"II

Relueo Codto-rfEsfEs

condiutiono True I Sqecoftte nsAlCnditions FasdFalalse d Sequeneol t aeet

Caused Fault 
Fault

If onitonTre eqeneviof ttmentsti CAllPrvt Codtin aleif'ncsf tteet
Falsed Caaued Fau LtCueal

Evaluation of ElaifCurn lfNetEi
Condition Caused Fauli asdFutCue al

Current ElsSfa=Curent Eslf
* The Leveson, Cha, ondito Shiueal templaedidnotaditimngush eweh

Temlae prvesente the two sieparatemly. i o dsigih ewe h
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Loopl Template

Loop Statement

Caused Faultin

Wrong Tv pe Of Loo#p t %ed I teration Scheme Sequence of Statements Condition True Past
CasdFutCaused Fault] N - I Iteration]

of loops and exp nded then associa ted s "SpciCondition" nod es andth Lequenceo Chateet

andShmea empat dIdo not.en~s

idntfir evrs SecfiatonDicretRag



Case Template
Case Statement

Casd Fault I
EvalIu-a tfio.n 0Of Ex1pression Case Alternative

Caused Fault Caused Fault

Current/ Previous
"4 ý Caused Fault

RelationAlentv

Curn Choiclus uret leraie Previous ChoicetivCaused Faultt Caused Fault Cue al

No the CodiionBod ofOt ersCatiton ~ iti Crrenati Atentien ~
* Thue to eeae Caused Futemlt phyicll placsed Futh"O ersCae

Caused ault" ndass Ciatsed nodes onaulo er level the h eoCa

and Shimeall template, nevertheless, the two templates are equivalent.
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Procedure Call Template

ro r b oProcedure Calf
Caused Fault

"Procedure Elaboration Procedure Body Ptrampters
Caused Fault Ca~used Fault E aus~ed Farult

Prtocedurea Sequence 
Rlto

o¢ $taf~eants

Ratement(s)

*The tool generated Procedure Call Template added the node
"Procedure Elaboration Caused Fault" to the template from

Leveson, Cha, and Shimeall.
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Function Call Templlate:

Function Call

Caused Fault ~ Cau~sed Fault Cue al

*The Function Call Template was not depicted in the works
of Leveson, Cha, and Shimeall.
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Block Statement Templat

Block of Statements
Caused Fault

(Block Name Optional)

[ti NException Block Body

Caused Fault Caused Fault

C•hoose One

SEaxpemeno(s) ExcPrtionsg)

* The tool generated Block Statement Template elaborated more
on the "Exception Caused Fault" node then did the works of
Leveson, Cha, and Shimeall.
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R~aise Template

Rkai-se Statement

Caused Fault

Caused Fault Caused Fault

* There was no difference in the Raise Template between the tooi
generated and the Levesor., Cha, and Shimeall templates.
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Division and Multipilication Template

Divaishon./Muldplication
Expression Ca us ld F.I uI

mused Caused Fault I

Term Operators I Division by Zero Term s) a nd/or Operators

*Division / Multiplication Template was not depicted in the works
of Leveson, Cha, and Shimeall.
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Addition and Subtraction Template

Addito nl/Subtracton

Expression Caused Fault

Term Termis) andlor Operators

* Addition / Subtraction Template was not depicted in the works
of Leveson, Cha, and Shimeall.
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And Relation Template
And elato

Caused :Fault

Left or Prior Relation Right Relation
Caused Fault Caused Fault

And Relation(s) Relation

* And Relation Template was not depicted in the works of

Leveson, Cha, and Shimeall.
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And Then Relation Template

And Then Relation
Caused Fault I

Left or Prior Relation Right Relation
Caused Fault Caused Fault

And Then Relation

Evaluation or Right
Left Relation True LRelation au~sed Fault

Relation

* And Then Relation Template was not depicted in the works of
Leveson, Cha, and Shimeall.
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Or Relation Templlate:

EOr Relation
Ca'use~d :Faulf

Left or Prior Relation Right Relation
Caused Fault Caused Fault

Or Relatlon(si Relation

* Or Relation Template was not depicted in the works of
Leveson, Cha, and Shimeall.
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Or Else Relation Templat

Or Else Relation

Caused Fault

Left or Prior Relation R on
Caused Fault Caused Fault

Or Else Relation

Relatilon

* Or Else Relation Template was not depicted in the works of
Leveson, Cha, and Shimeall.
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Relation Template

Relation
Caused Fault

Expression ('asi ed Fault Caused Fault Expression Caused Fault

Termsi Relational Operators Termis)

* Relation Template was not depicted in the works of
Leveson, Cha, and Shimeall.



Index1 Componlent Temp~late

Index Comiponent
Caused Fault

Prefix Expression(s)
Caused Fault Caused Fault

Name Relation(s)

*Index Component Template was not depicted in the works of
Leveson, Cha, and Shimeall.
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Range Template

ERange S~peciricationCased Fault

Name of Range Specified Range
Caused Fault Caused Fault

Range Specification I L

LeftSimpe EpresionRight Simple Expression

Expression Expression

• Range Template was not depicted in the works of Leveson,
Cha, and Shimeall.
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Delay Template

Delay

causes failure

o r

Task delay Expression
evaluation

causes fiadilure causes failure
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Abort Template

Abort
causes
failure

or

Tasks . .. ..
Tasks updateTssvariables Tasks

not yet in rendezvous
activated
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Entry Template

Entry call
causes
failure

or

__Range

Rendezvous out of order Actual
causes parameter evaluation
failure causes failure
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Selective Wait Template

Selective wait
causes failure

nor

Select alternative

Condition true causes failure Else sequence of
and select statements

causes failure (see next figure) causes failure

* The Cha, Leveson, and Shimeall select template contained
and AND gate vice an OR gate at this location.
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Select Alternative Template

Select alternative

causes failure

o r

Condition true and Failure caused

select alternative by other
causes failure alternative
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Conditional Entry Template

Conditional entry call

causes failure

or

Cancel of
rendezvous

Rendezvous causes failure Sequence of
causes failure statements during

rendezvous

causes failure

• This node was added to more accurately reflect the Ada
grammar.
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Timed Entry Template

Timed entry

causes failure

(or

_ _ _ _Timeout *

Rendezvous causes failure Sequence of
causes failure statements during

rendezvous
causes failure

• This node was added to more accurately reflect the Ada

grammar.
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Rendezvous Template

causes failure

rendezvous dlovs't occu

(see below)

Acceptbody TParameters
causes failure Task aborted cause failure

Exception * See next page

Rendezvous

doesn't occur

Calling task Called task Called task in
not at call not at accept other rendezvous

S~(see below)

or
I- - I

Task past call No call exists Tasks halt

Tas at cll in task above call

SCalled task not

at accept

Task past N accept in Task halts
accept called task above accept alternative

rendezvous
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Rendetvous Template (cont)

A n exception can be raised in a task during a rendezvous or when
attempting a rendezvous. 7he situations resulting in raising an
exception are used to modify the original rendezvous template [Ref 231

Task
aborted

or

Called task
becomes abnormal

Task complete during Exception raised

prior to rendezvous during accept

rendezvous not handled
locally

TASKINGERROR
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APPENDIX C: FTE FILE INFORMATION

The fault tree files that can be .- ad by the Fault Tree Editor (FTE), and that FTE writes
have the following characteristics:

line I: label string
line 2: fault string
line 3: file string
line 4: startline integer

end-line integer
x_coord integer
y_coord integer
type integer
gate integer
n_children integer

Line 4 has seven fields seperated by any whitespace except a newline. An FTL file consists
of a series of the above four line groups, one group for each node. In addition the nodes
must be ordered in "preorder" fashion to be understood by FTE. The best way to see this
is to create a simple fault tree using FTE and then look- at the file generated. An example
of a single node follows:

Label: "Top"
Fault: "This program will always fail"
File: "test.c"
start line: I
end-line: 55
x coord: 200
y_coord: 300
type: I
gate: 0
n children 0

The above node would look like:

Top
This program will always fail
test. c
1 55 200 300 I 0 0

in the FTE file saved

77



APPENDIX D: PROJECT.A SOURCE LISTING
S...............................................................................................................
-- The original source code with'd and instantiated a generic-elementary'functions package
-- available in the Alsys-Ada Compilation System. The code as follows was
-- compiled and executed using both SunAda and Meridian Ada compilers without
-- error.

with textio, calendar: -- with generic elementarV junctions
use text io. calendar:

procedure PROJECT is

--package MA TH_FUNCT is new GENERI('_ELEME'T4R YFWVCTIOMS(FLOA 7);
--use AM THFUNCT:

package FLOATINOUT is new FLOAT IO(FLOAT):
use FLOATINOUT;

--Type identifications
type COMPONENT is (XY,Z);
type VECTOR is array (COMPONENT) of FLOAT-
type VELOCITIES is array (0..4) of VECTOR;

DELTA TIME " constant FLOAT:= 0.25:
--delta time T= 1/4 seconds

NO TARGET: BOOLEAN := FALSE,
CURRENT "constant INTEGER := 4:
LINT SEC .INTEGER:
INTERVAL • DAYDURATION := 1.0,
DISP TIME: DAYDURATION := 0.0,
POSITION VECTOR := (27000.0,22000.0,5000.0):
INT VEL VECTOR := (230.0,180.0,25.0):
VELOCITY 'VELOCITIES,

function "+" (LEFT. RIGHT : in VECTOR) return VECTOR is

-- This function is written to handle VECTOR addition.

TEMP: VECTOR:
begin

TEMP(X) := LEFT(X) + RIGHT(X):
TEMP(Y) := LEFT(Y) + RIGHT(Y):
TEMP(Z) .= LEFT(Z) + R[GHT(Z):
return TEMP:

end "4";
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function "-" (LEFT. RIGHT: in VECTOR) return VECTOR is

-- This function is written to handle VECTOR subtraction.

TEMP• VECTOR.
begin

TEMP(X) := LEFT(X) - RIGHT(X).
TEMP(Y) := LEFT(Y) - RIGHT(Y):
TEMP(Z) := LEFT(Z) - RIGHT(Z):
return TEMP.

end %`,

function SIMPSON (XPOS : in VECTOR:
VEL : in VELOCITIES) return VECTOR is

----------------------------------------------------.-.-.-.-.-..- --

-- This function performs numeric integration using

-- Simpson's Rule and returns a position vector given
-- a set of sample VELOCITIES.

T: VECTOR.
1: COMPONENT,
J : INTEGER:

begin
for I in COMPONENT loop

T(I -= (VEL(VELOCITIES'FIRST) (I) + VEL (VELOCITIES'LAST) (I)):

for J i VELOCITIES'FIRST + L..VELOCITIES'LAST - I loop
if (J MOD 2) = I then

T(I) := T(I) + 4.0 * VEL(J) (I):

Sc
TIl) := T(I) + 2.0 * VEL(J) (I),

end it.
end Ioop.
"1I i DELTA_TIME * T(I) 1 3.0:

end loop
relurnl

end SIMPSON.

package ATOD i,

-- This package is used to maintain the velocity values for the
-- previous sctoiid ai 1/4 second intervals (five values). It has

-- one function %% hih returns an array of vectors. The task is
-- written to handle concurrent processing of ACCELEROMETER.

procedure INITIALIZEVELOCITY(FIRSTVEL• in VECTOR):
procedure GETVELOCITIES(NEW_VEL• out VELOCITIES)-

task ACCELEROMETER is
entry START:

end ACCELEROMETER:
end ATOD.
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package body ATOD is
VEL: VELOCITIES := (others => (others => 0.0)):

procedure INITIALIZEVELOCITY(FIRSTVEL in VECTOR) is
I: INTEGER.

begin
for I in VELOCITIES'RANGE loop

VEL(I) := FIRSTVEL;
end loop;

end INITIALIZEVELOCITY:

procedure GETVELOCITIES(NEWVEL" out VELOCITIES)is
begin

NEWVEL:= VEL;
end GETVELOCITIES:

task body ACCELEROMETER is
use CALENDAR;
INTERVAL : constant DURATION 0.25,
DISP TIME: DURATION:= 0.0.
LINTSEC : INTEGER:= 0.

begin
accept START do
null;
end START,

LINT SEC := INTEGER(SECONDS(CLOCK)).
DISP TIME := DURATION(LINTSEC);
while DISP_TIME < SECONDS(CLOCK) loop

DISPTIME := DISP TIME + INTERVAL-
end loop;
loop

delay DISPTIME - SECONDS(CLOCK);
for I in VELOCITIES'FIRST..VELOCITIES'LAST-I loop

VEL(I):= VEL(I+1):
end loop;

VEL(VELOCITIES'LAST) := VEL(VELOCITIES'LAST) +
(0.012,0.0098,0.00275);

exit when VEL(4)(X) > 700.0;
end loop;

end ACCELEROMETER:
end ATOD:
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procedure PUTPOSITIONVELOCITY (XP: in VECTOR:
VEL " in VECTOR) is

begin
SETCOL(2):
PUT(XP(X). FORE => 6. AFT => 4. EXP => 0):

PUT(" "):
PUT(XP(Y). FORE => 6. AFT => 4, EXP => 0):

PUT(, ,):
PUT(XP(Z), FORE => 6. AFT => 4. EXP => 0).
PUT("' '"),
PUT(VEL(X). FORE => 6, AFT => 4. EXP => 0).

PUT(" t):
PUT(VEL(Y). FORE => 6, AFT => 4, EXP => 0).
PUT(" ").
PUT(VEL(Z), FORE => 6. AFT => 4. EXP => 0)Y

NEWLINE.
end PUTPOSITIONVELOCITY:

begin -- main program

ATOD. INITIALIZEVELOCITY(INTVEL);
LINT SEC:= INTEGER(SECONDS(CLOCK));
DISP TIME := DURATION(LINTSEC) + 0.8:
ATOD.ACCELEROMETER.START:
while NOTARGET = FALSE loop

if POSITION(X) > 0.0 then
delay (DISP TIME - SECONDS(CLOCK) - 0.02);
ATOD.GETVELOCITIES(VELOCITY);
PUTPOSITIONVELOCITY(POSITION, VELOCITY(CURRENT)):
POSITION:= POSITION - SIMPSON(POSITION, VELOCITY);
DISPTIME := DISPTIME + INTERVAL;

else
NOTARGET:= TRUE-

end if:
end loop;

end PROJECT:
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